
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

FAULT TOLERANCE IN THE
SERVER AND AGENT BASED

 NETWORK MANAGEMENT (SAAM) SYSTEM

by

Troy Wright

September 2001

 Thesis Advisor: Geoffrey Xie
 Second Reader: Bert Lundy

Approved for public release; distribution is unlimited

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Fault Tolerance in the Server and Agent Based Active Network
Management (SAAM) System
6. AUTHOR(S)
Wright, Troy V.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Interconnected networks of computers are becoming increasingly important. It is the Internet
that has spurred the most recent growth in global computer networks. The limitations of the
Internet can be blamed on many factors but when determining solutions to these shortcomings
the focus has been on replacing the current Internet Protocol version 4 (IPv4) with the new
Internet Protocol version 6 (IPv6). Much work has been done and much more work remains to
be done in transitioning to and reaping the benefits of this “Next Generation Internet.” The
Server and Agent Based Active Network Management (SAAM) project is one of many “Next
Generation Internet” projects that intend to implement and exploit the enhanced capabilities of
IPv6 to overcome the limitations of the current Internet. The focus of the SAAM project is
guaranteed quality of service (QoS). This thesis addresses fault tolerance in a SAAM region
with regards to router and link failures. A hybrid link restoration (rerouting) scheme is
proposed, in which central knowledge (at the SAAM server) of the network topology is used to
develop alternate paths while path switching is done at a local (router) level.

15. NUMBER OF
PAGES

14. SUBJECT TERMS
Fault Tolerance, Local Rerouting, Next Generation Internet, Guaranteed Quality of Service

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Interconnected networks of computers are becoming increasingly important. It is

the Internet that has spurred the most recent growth in global computer networks. The

limitations of the Internet can be blamed on many factors but when determining solutions

to these shortcomings the focus has been on replacing the current Internet Protocol

version 4 (IPv4) with the new Internet Protocol version 6 (IPv6). Much work has been

done and much more work remains to be done in transitioning to and reaping the benefits

of this “Next Generation Internet.” The Server and Agent Based Active Network

Management (SAAM) project is one of many “Next Generation Internet” projects that

intend to implement and exploit the enhanced capabilities of IPv6 to overcome the

limitations of the current Internet. The focus of the SAAM project is guaranteed quality

of service (QoS). This thesis addresses fault tolerance in a SAAM region with regards to

router and link failures. A hybrid link restoration (rerouting) scheme is proposed, in

which central knowledge (at the SAAM server) of the network topology is used to

develop alternate paths while path switching is done at a local (router) level.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PROBLEM STATEMENT AND APPROACH..1
C. SCOPE ..2
D. THESIS ORGANIZATION..2

II. NETWORK FAULT TOLERANCE AND SAAM BACKGROUND.....................3
A. GOAL OF SAAM ..3
B. SAAM ARCHITECTURE ..3
C. LINK RESTORATION...5

1. Types of network failures..5
2. Current rerouting solutions ..5
3. Next generation rerouting solutions ...6

III. FAILURE DETECTION...9
A. FAILURE DETECTION STRATEGY..9
B. SAAM AUTOCONFIGURATION CYCLE ...9

1. Pseudo-code for proposed SAAM failure detection scheme10
2. Sample SAAM auto-configuration cycle..11

C. INTERFACE SILENT MESSAGE..13
D. FAILURE DETECTION LIMITATION ..15
E. CLASSES MODIFIED TO SUPPORT FAILURE DETECTION15

1. Interface ..15
a) public boolean trafficReceived()...15

2. LinkStateMonitor ..15
a) private synchronized void generateInterfaceSA()..................15

3. InterfaceSA...15
a) public InterfaceSA(IPv6Address ipNum, int

messageIndex)...15
4. BasePIB...15

a) public void processLSA (LinkStateAdvertisement LSA)15

IV. REROUTING...17
A. REROUTING STRATEGY..17

1. Alternate Path Development and Deployment................................17
a. Pseudo-code for Alternate Path Development and

Deployment..17
2. Storing Primary and Alternate Routes ..19
3. Local restoration ..20

B. CLASSES MODIFIED TO SUPPORT REROUTING..............................21
1. FlowRoutingTable..21

a) public synchronized void add (FlowRoutingTableEntry
entry)..21

b) public Object get(Object o) ...21

 vii
c) public void silentInterface(Interface badInterface)...............21

2. FlowRoutingTableEntry..22
a) public int getGoodness() ...22

3. BasePIB...22
a) private Path findAltPath(Integer sourceNode, Integer

destinationNode, Integer previousNode, Integer
nextNode, IPv6Address deadInterface)..............................22

b) protected void createAlternateTree(Path primaryPath)22
c) protected int admissionControl_IS(FlowRequest

flowRequest) ..22

IV. TESTING..23
A. ALTERNATE PATH(S)/TREE TESTING...23

1. No alternate paths topology ..23
2. Avoid next interface on last hop topology..24
3. Avoid infinite loop topology ..26
4. Avoid next node topology ..27
5. Avoid next interface topology ...29

B. TRAFFIC REROUTING TESTING ...30

V. CONCLUSIONS AND RECOMMENDATIONS...33
A. SYNOPSIS AND CONCLUSION ..33
B. FLOW ROUTING TABLE REDESIGN...33
C. FAILURE DETECTION...33
D. TEST METHODOLOGY ...34
E. AREAS FOR FURTHER INVESTIGATION AND STUDY34

APPENDIX A. FLOW ROUTING TABLE CODE CHANGES37

}APPENDIX B. BASEPIB CODE CHANGES ...39

LIST OF REFERENCES..43

DISTRIBUTION LIST..45

 viii

LIST OF FIGURES

Figure 2.1 Sample SAAM Network. ...4
Figure 3.1 Auto-configuration Legend..11
Figure 3.2 Auto-configuration Phase 0. ..12
Figure 3.3 Auto-configuration Phase 1. ..12
Figure 3.4 Auto-configuration Phase 2. ..12
Figure 3.5 Auto-configuration Phase 3. ..13
Figure 3.6 Auto-configuration Phase 4. ..13
Figure 3.7 Interface Silent Message Format ...14
Figure 5.1 No alternate path topology...23
Figure 5.2 Avoid next interface topology. ..25
Figure 5.3 No infinite loops topology. ..26
Figure 5.4 Avoid next node topology..28
Figure 5.5 Avoid next interface topology. ..30

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 4.1 Example of Old Flow Routing Table...20
Table 4.2 Example of New Flow Routing Table. ..20
Table 4.3 Flow Routing Table after Switching to Backup Path(s).21
Table 5.1 No Alternate Path Routing Tables. ..24
Table 5.2 Avoid Next Interface Routing Tables. ...25
Table 5.3 No Infinite Loops Flow Routing Tables. ...27
Table 5.4 Avoid Next Node Flow Routing Tables. ...29
Table 5.5 Avoid Next Interface Flow Routing Tables...30
Table 5.6 Router “B” Interface Status ...31
Table 5.7 Router “B” Link State Monitor..31
Table 5.8 Router “A” Link State Monitor..31
Table 5.9 Router “A” Flow Routing Table ..32
Table 5.10 Router “C” Flow Sink..32

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGEMENTS

I would like to thank Professor Xie for his patience and assistance in this

endeavor. His guidance allowed me to explore and learn while maintaining a steady

course towards the destination.

 xiii

I. INTRODUCTION

A. MOTIVATION

Interconnected networks of computers are becoming increasingly important.

Most people interact or are affected by computer networks on a daily basis. Computer

networks have been around for quite some time but it is the Internet that has spurred the

recent rapid growth in computer networks.

The Internet is constantly evolving and providing new and innovative ways to

improve the way we conduct business and our lives in general. Due to the numerous

ways that people have found to exploit the capabilities of the Internet the network has

become overtaxed in a number of ways. Because of the limitations of the current

Internet, specifically Internet Protocol version 4 (IPv4), a new protocol Internet Protocol

version 6 (IPv6) has been designed and research into the “Next Generation Internet” has

been embarked upon.

The Server and Agent Based Active Network Management (SAAM) project is

one of many “Next Generation Internet” projects, which intends to implement and exploit

the enhanced capabilities of IPv6 to overcome the shortcoming of the current Internet.

B. PROBLEM STATEMENT AND APPROACH

The SAAM project was launched in 1998 as the thesis project for two computer

science students at the Naval Postgraduate School. Since its humble beginnings it has

served as the thesis vehicle for more than 20 students.

Currently the SAAM project could be classified as being in the intermediate phase

of development. The basic network routing functions have been designed and

implemented and a graphical user interface has been overlaid to provide a more efficient

method of monitoring the working SAAM network and speed development efforts.

One of the pillars of the SAAM project is guaranteed quality of service (QoS) for

certain classes of flows admitted into a SAAM network region. When developing a plan

to guarantee QoS to network flows the possibility of network failures must be taken into

consideration. Dealing with network failures is the focus of this thesis.

1

The approach to this thesis will be to identify possible points of failure within the

SAAM network. Continue by determining the probability of failure at those points

identified. Once the probability of failure has been determined consider which points

have a failure probability that is significant enough to warrant proactive or reactive

measures by the SAAM network to be developed for them. Finally after identifying the

potential points of failure, which have significant fault probabilities, develop fault

tolerant measures to compensate in the event that one of those failures does occur.

C. SCOPE

The efforts of previous participants in the SAAM project have laid the foundation.

This thesis will add functionality to already existing objects such as the Link State

Monitor in achieving the goal of fault tolerance. Although the majority of the software

coding anticipated in this thesis will be modifications to current modules, sound software

development principles will be adhered to at all times, in particular a focus will be

maintained on developing modular code whenever possible.

The scope of this thesis will be limited to three primary tasks: alternate path (tree)

development, fault detection, and rerouting affected flows upon fault detection.

D. THESIS ORGANIZATION

Chapter I: Introduction. A brief description of the problem addressed by this

thesis.

Chapter II: Network Fault Tolerance and SAAM Background.

Chapter III: Failure Detection & Path Switching.

Chapter IV: Creating Alternate Path(s)/Tree(s).

Chapter V: Testing.

Chapter VI: Conclusions and Recommendations.

2

II. NETWORK FAULT TOLERANCE AND SAAM
BACKGROUND

A. GOAL OF SAAM

The primary purpose of the Server and Agent Based Network Management

project is to provide quality of service (Quality of Service) guarantees in the next

generation Internet. The SAAM project intends to take advantage of the increasingly fast

physical communication media by streamlining router functionalities and transferring

most processing intensive tasks from all routers to just a few SAAM Servers.

One of the key considerations during the development of SAAM is compatibility

with the current Internet. The extremely slow adoption of IPv6 is evidence that most

businesses have a significant amount of capital invested in IPv4 hardware and the

benefits of IPv6 do not currently justify the cost of purchasing new hardware. SAAM

must be compatible with both IPv4 and IPv6 while providing affordable QoS guarantees.

B. SAAM ARCHITECTURE

A SAAM region is a network of SAAM routers and servers. One server, the

primary server, monitors and controls all the activity within a SAAM region.

3

Figure 2.1 Sample SAAM Network.

One of the distinguishing features of the SAAM server is its total knowledge of

the network topology and status. The server maintains a Path Information Base (PIB),

which is a table of all know paths within a SAAM region. The PIB is populated as

routers are added to the region. The rerouting strategy of this thesis relies on the PIB to

determine alternate paths and in doing so does not incur any additional overhead in route

discovery because only paths already within the PIB are utilized.

If there is more than one server within a SAAM region the other servers are

backup servers and can take over in the event of primary server failure or malicious

attacks on the primary server. Efraim Kati’s thesis, “Fault Tolerant Approach for

Deploying Server Agent Based Active Network Management (SAAM) Server in

Windows NT Environment to Provide Uninterrupted Services to Routers in Case of

Server Failure(s)”, addresses the issue of fault tolerance in the event of SAAM server

failures(s).

4

A SAAM region is self-configuring. Configuration and control traffic is

constantly passed between the routers and the server. This traffic keeps the server abreast

of current network load and health. Of critical importance to this thesis is the Link State

Advertisement (LSA) message. The LSA is a report to the server on the status of a router

interface. Every time there is an auto-configuration cycle, each router sends one LSA for

each of its interfaces to the server.

C. LINK RESTORATION

1. Types of network failures

There are primarily three network components that may fail, and these three can

be placed in two categories. The first component that may fail is the wire, optical fiber,

or whatever type of media carries the signal between interface cards. The second

component that may possibly fail is the interface card, which connects the wire and the

router. The final component that may fail is the router itself. The interface card and the

wire are combined into one entity called a link. The router itself is called a node. An

entire network topology is a set of nodes connected by a set of links. Of the two types of

failures, the link failure is far less serious than a node failure. When a node fails, in

effect, it causes all its connected links to fail. If there is an interface failure the router

which hosts the interface will discover the failure and will broadcast a revised routing

table to the routers that are attached to its good links. If a link failure or node failure

occurs all the routers attached to the failed link/router will detect the failure, will revise

their routing tables accordingly, and will rebroadcast their routing tables. These failures

are detected because the routers exchange routing information on a periodic basis. If a

neighboring router fails to respond within a set amount of time its neighbors will consider

that link dead. At this point any arriving traffic will continue through to its destination

because new routing tables have been computed, with the failed router/link being taken

out of the network topology.

2. Current rerouting solutions

The current solution to rerouting is handled by the same mechanism that creates

the primary routes for network traffic. When a router is brought online it broadcasts its

existence to its neighboring routers. Its neighbors receive this broadcast message and

make an entry in their routing tables, indicating that they can now reach the new router
5

with a cost of 1 hop. The hop metric is the most commonly used cost metric in routing

tables. The routers that receive the broadcast message reply to the new router with their

own routing tables, which the new router records for future use. An administrator can

enter certain static routes and default routes, which do not or should not change very

often, into the router. Now that the new router has exchanged routing information with

all its neighbors it can make a next hop routing decision based on the Internet Protocol

(IP) number and the cost metric, if more than one possible route presents itself. The

process mentioned above is implemented with standard protocols such as the Routing

Information Protocol (RIP) and Open Shortest Path First (OSPF).

What are the drawbacks of this solution? The main drawback is that any TCP

(transport layer) sessions that existed on the link/node when the failure occurred will be

lost. The user or application will have to renegotiate a TCP session after the failure has

been discovered and the new routes have been determined. Also, it should be noted that

the advertisement of failures in this type of network could take a very long time to

propagate through the network, causing significant delay in reestablishing TCP sessions.

Are there any ways to improve on the current solution without replacing it

entirely? One of the simplest quick fixes to a network failure is to instruct the router to

send packets destined for the failed link to the default link, or any available link, in hopes

that the packets will manage to get to their destination. This is a quick and simple fix but

it lacks reliability.

The main problems in the current solution that should be addressed by any next

generation solution are the timely discovery of network failures and the expeditious

rerouting of the affected traffic. As mentioned before the big push for QoS has driven the

need for better network rerouting. The goal of this next generation rerouting system is to

recover from any network failures so quickly that the TCP session is not dropped and that

a minimal number of packets are lost during the transition.

3. Next generation rerouting solutions

One of the most popular concepts for next generation rerouting is an entity that

monitors the health of the entire network. This network monitor could keep an eye on the

current status of all links/nodes using reserved channels on existing links or auxiliary

6

links if deemed necessary. Instead of reporting their status to their neighbors, the nodes

in this type of network would report their status to the network monitor. The network

monitor could then create a picture of the network and send only pertinent routing

information to each node in the network.

The detection of failures in this type of network would occur much more rapidly.

When a failure was detected the detecting entity need only notify the network monitor of

the failure. The affected routes would be quickly updated by the monitor and new

routing information sent only to those destinations which required it.

If QoS is a critical issue, this network monitor could provide primary label

switched paths (LSPs) for guaranteed QoS flows and a stand-by path should the primary

path become unavailable. When determining a primary and alternate path it is crucial to

find two paths with minimum interference, in other words, two paths that share the least

number of links/nodes. This will result in a greater likelihood that, in the event of a

network hardware failure, the alternate route is not affected by that failure. This type of

minimum interference routing is based on a single flow request.

Another possible benefit that may be gained from a network monitoring entity is a

more efficient use of network resources. During the research for this project, an article

published in the IEEE magazine titled, “MPLS Traffic Engineering Using Enhanced

Minimum Interference Routing: An Approach Based On Lexicographic Max-Flow” (L-

MIRA), by Koushik Kar, Murali Kodialam, and T. V. Laksham was discovered which

proposes a new routing algorithm. This routing algorithm also looks at minimum

interference issues, but from a larger perspective – it looks at possible interference

between the current flow request and all future flow requests. Current routing algorithms

are based on the number of hops from source to destination and the bandwidth available

on the paths to be used. The L-MIRA algorithm takes into account all ingress and egress

routers in the network when making routing decisions. When a flow request arrives at a

router the network monitory determines the path which will least interfere with future

requests from all ingress/egress routers in the network yet will still satisfy the

requirements of the flow request, i.e. bandwidth and delay requirements. This algorithm

can be used to determine an efficient primary and alternate path for all flow requests.

7

This algorithm has been proven to make much better use of network assets (network

utilization) than existing algorithms. Although this in itself is very desirable it has the

added benefit greatly increasing the chances that a flow can be rerouted in the event of a

network failure.

The L-MIRA algorithm is not without its drawbacks though. The most significant

drawback of L-MIRA is that it is computationally expensive, which means there may be

delays in servicing flow requests. One possible way to reduce the service delay for flow

requests would be to only use L-MIRA to determine routes for guaranteed QoS flows.

All best efforts flows could be routed according to the old model. Although this best

effort traffic might not be routed in the most efficient way it would lighten the load of the

network monitor and could always be preempted for higher priority traffic if the need

arose. Although L-MIRA can be used to determine a primary and alternate path for an

individual flow request, the computational cost involved may eliminate it as the preferred

minimum interference routing algorithm, instead a heuristic may be used which is much

quicker and still produces satisfactory results.

8

III. FAILURE DETECTION

A. FAILURE DETECTION STRATEGY

The first consideration when designing a fault tolerant network protocol is a

failure detection mechanism. The SAAM auto-configuration cycle will be utilized to

detect failures. There are two types of failures that this thesis focuses on, link failures

and routers failures. A link failure occurs when an interface fails or the link between two

interfaces is broken. A router failure, also referred to as a node failure, is the failure of

router hardware or software. A router failure is much more catastrophic than a link

failure because in effect it results in link failures for all attached interfaces.

The failure detection method proposed by this thesis does not allow a router to

determine whether a detected failure is a link failure or a node failure. If a link failure

occurs both routers affected by the failure will send Interface Silent messages to the

SAAM server, therefore allowing the SAAM server to determine that a link failure has

occurred. The SAAM server can then deduce that a link failure has occurred. If a node

failure occurs the SAAM server will receive multiple Interface Silent messages from

routers that are attached to the failed node but no Interface Silent messages from the

failed router, which will allow the SAAM server to deduce a node failure has occurred.

Each interface has a link state monitor. During each SAAM auto-configuration

cycle an interface should receive, at a minimum, one inbound SAAM control message. If

no traffic is received at an interface between auto configuration cycles it can be assumed

that there is some type of failure causing packets that are supposed to come from the

neighboring interface to be dropped.

B. SAAM AUTOCONFIGURATION CYCLE

There are three types of messages that are passed during a SAAM auto-

configuration cycle: downward configuration messages (DCM), upward configuration

messages (UCM), and parent notifications (PN). The details of these messages are

described in chapter III of Hassan Akkoc’s thesis, titled “SAAM Signaling Channel

Configuration Protocol Design”. The content of these messages is not important to the

9

failure detection mechanism, only the fact that each interface will receive at least one of

these messages per auto-configuration cycle.

Each SAAM auto-configuration cycle begins with the SAAM server broadcasting

a DCM to all directly connected routers. Those routers return a PN to the node from

which they have received the first DCM in the current cycle. The routers then broadcast

a DCM to their remaining neighbors. This failure detection method incurs less

communication overhead than the existing CISCO failure detection methods, which

passes Hello messages between each pair of interfaces. A sufficiently rapid detection

time should be achieved since the SAAM auto-configuration cycle is planned to occur at

300-550ms intervals.

1. Pseudo-code for proposed SAAM failure detection scheme

Function GenerateInterfaceStatusAdvertisement() is called at each router interface

during every configuration cycle. Only relevant code is included in the pseudo-code.

// Trigger event: LSA generation for each auto-configuration cycle.

GenerateInterfaceStatusAdvertisement()

if (HasTrafficBeenReceived() = false)

then SwitchToBackupPaths(thisInterface);

// end of function GenerateInterfaceStatusAdvertisement

HasTrafficBeenReceived()

if (lastCyclePacketCount = inboundPacketCount)

then return false;

else return true;

lastCyclePacketCount ←inboundPacketCount;

// end of function HasTrafficBeenReceived()

10

SwitchToBackupPaths(interface)

for each FlowRoutingTableEntry

do if (NextHop & interface are connected & FRTE Type = Primary)

 then DemoteFlowRoutingTableEntry(FRTE); // Switch to alternate

 // paths all FRTE’s

 // that have interface

 // as the next hop.

// end of function SwitchToBackupPaths

2. Sample SAAM auto-configuration cycle

The following figures illustrate a single SAAM auto-configuration cycle and how

each interface receives at least one control message during the cycle.

Figure 3.1 Auto-configuration Legend.

11

Figure 3.2 Auto-configuration Phase 0.

Figure 3.3 Auto-configuration Phase 1.

Figure 3.4 Auto-configuration Phase 2.

12

Figure 3.5 Auto-configuration Phase 3.

Figure 3.6 Auto-configuration Phase 4.

C. INTERFACE SILENT MESSAGE

Since a local restoration method has been proposed, rerouting traffic can occur

without informing the SAAM server that a failure may have occurred. An “Interface

Silent” message has been designed though that is sent to the SAAM server to indicate

that a router has not received traffic from a particular interface, which indicates a possible

failure. The “Interface Silent” message indicates that a router believes that some type of

failure has occurred but it is still listening to the interface in question, in the event a quick

recovery occurs. At some point, after an interface failure is confirmed, it will be

necessary to remove that interface, and all paths that traverse it, from the SAAM network

topology. The removal of interfaces from the SAAM network is not formalized by this

thesis and is left for further study.
13

 8 1
Time Stamp # Of Msgs

LinkStateAdvertisement (LSA)

1 1
Msg Type MsgLen (bytes)

= 12

This is LSA

InterfaceSA (ISA)

1 16
ISA Type Silent Interface

= 3 Ipv6Address

SAAM L

(SILENT ISA)

16
Former Router

Ipv6Address

ink Sta
Inte

Figure 3.7

Byte Ar

1 varia
ID # Of ISAs Byte

te Advertisem
rface Silent M

 Interface Silent Messag

14

 variable
ray of Messages

ble
Array of ISAs

…

…

ent Message Format
essage

e Format

D. FAILURE DETECTION LIMITATION

The proposed failure detection method has one notable limitation. Specifically,

the upstream router is not capable of determining whether a failure is a link failure or a

node failure. This is because the failure detection method relies only on detecting that no

traffic is being received by a particular interface and makes no attempt to analyze the

particular elements that may be causing the failure. Any method that would attempt to

differentiate between a link and a node failure would introduce additional overhead,

which has been deemed not necessary at this point.

E. CLASSES MODIFIED TO SUPPORT FAILURE DETECTION

1. Interface

a) public boolean trafficReceived()

 This method is introduced to provide a way to query an interface whether

it has received any packets since it was queried last. It is reset each time it is queried.

2. LinkStateMonitor

a) private synchronized void generateInterfaceSA()

This method was modified so that each time it is called, which is once per

auto-configuration cycle, it in turn calls Interface.trafficReceived(). If no traffic has

been received an Interface Silent message is generated and sent to the SAAM server.

3. InterfaceSA

a) public InterfaceSA(IPv6Address ipNum, int messageIndex)

This is the constructor for the new Interface Silent message. The

messageIndex is not a necessary field except that it provides a unique constructor for the

new message. It is not used in the construction of the actual message. The Interface

Silent message is simply the IPv6 address of the interface on which a router is no longer

receiving packets.

4. BasePIB

a) public void processLSA (LinkStateAdvertisement LSA)

This method modified so that Interface Silent messages are recognized

when received. Currently there is no action taken upon the receipt of Interface Silent

messages.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

IV. REROUTING

A. REROUTING STRATEGY

A proactive rerouting strategy with local restoration has been chosen. This

solution will only provide rerouting services to Integrated Service (IS) flows. An

Integrated Service flow is a flow that is introduced into the SAAM based on individual

flow requirements. If there are sufficient network resources to meet an IS flow’s

requirements, i.e. bandwidth, delay, then that flow is accepted and the network

guarantees to maintain those parameters which the flow has requested for the duration of

the flow.

A proactive rerouting strategy is far superior to a reactive strategy. A reactive

strategy is one where alternate path determination is not made until after a failure is

detected. This wastes precious time and results in dropped packets. Instead, the SAAM

server will be able to establish alternate paths for IS flows before a failure occurs, and

then rapidly switch the affected flows to the alternate paths.

1. Alternate Path Development and Deployment

Since the SAAM server maintains a record of all loop-free paths up to a particular

hop count in the Path Information Base there is no need to go through the process of path

discovery during the alternate path determination process. The alternate path tree is

developed by starting at the source node and querying the PIB to determine if there is a

path from the source node to the destination node, which avoids the next node in the

primary path. We must attempt to avoid the next node because the failure detection

method can't distinguish between link and node failures. If there are no paths that avoid

the next node check for paths that avoid the bad link and use this as an acceptable second

choice. If an alternate path is found send a flow routing table update to the routers in the

alternate path. Repeat the alternate path determination process for each node in the

primary path, the resulting alternate paths will form a tree rooted at the destination node.

a. Pseudo-code for Alternate Path Development and Deployment

// A Path contains a sequence of nodes and interfaces.

17

// sourceNode, destinationNode, previousNode, nextNode,

// are all derived from PrimaryPath.

CreateAlternateTree(PrimaryPath)

for each node n ∈ PrimaryPath (except the destination node)

do sourceNode ← n;

alternatePath ← FindAlternatePath(sourceNode,

destinationNode,

previousNode,

nextNode,

nextInterface);

if (alternatePath ≠ null)

then SetupAlternatePath(alternatePath);

// end of CreateAlternateTree()

FindAlternatePath(sourceNode,

destinationNode,

previousNode,

nextNode,

nextInterface)

Path foundPath ← null;

for each Path p ∈ PathInformationBase

do if (p.SourceNode = sourceNode and

 p.DestinationNode = destinationNode and

 previousNode ∉ p and nextNode∉ p)

18

then foundPath ← p;

break;

 else if (p.SourceNode = sourceNode and

 p.DestinationNode = destinationNode and

previousNode ∉ p and nextInterface ∉ p)

then foundPath ← p; // Continue to try and find a

 // path which avoids the next

 // node.

return foundPath;

// end of FindAlternatePath

2. Storing Primary and Alternate Routes

A mechanism must be devised for storing primary and alternate path information

at each router. The previous flow routing table was implemented using the Java

Hashtable class. In that implementation the path ID is used as the Hashtable index value.

The object stored in the flow routing table (Hashtable) is a flow routing table entry,

which contains path ID and next hop.

It is desirable to add a “goodness” field to the flow routing table entry, which

indicates whether a path is a primary or alternate path. It is also desirable to reference to

flow routing table entry objects to a single index value. Hashtable cannot accomplish this

because only one object per index value is allowed. Research was done and the JGL

class Hashmap was found which has the desired functionality. JGL is a Java Library

provided free of cost by the company ObjectSpace. The Universal Resource Locator

(URL) of the ObjectSpace website is: http://www.objectspace.com/. The JGL library can

be download from the ObjectSpace website. This implementation initially stores primary

routes with a goodness value of 2 and alternate routes with a goodness value of 1. The

routing algorithm will always choose the next hop with the largest goodness value.

19

http://www.objectspace.com/

Path ID Next Hop (IPv6)

2 99.99.99.99.0.0.0.0.1.0.0.0.0.0.0.1

17 99.99.99.99.0.0.0.0.3.0.0.0.0.0.0.1

49 99.99.99.99.0.0.0.0.3.0.0.0.0.0.0.1

61 99.99.99.99.0.0.0.0.4.0.0.0.0.0.0.2

Table 4.1 Example of Old Flow Routing Table.

Path ID Next Hop (IPv6) Goodness

2 99.99.99.99.0.0.0.0.1.0.0.0.0.0.0.1 2

17 99.99.99.99.0.0.0.0.3.0.0.0.0.0.0.1 2

17 99.99.99.99.0.0.0.0.5.0.0.0.0.0.0.5 1

49 99.99.99.99.0.0.0.0.3.0.0.0.0.0.0.1 2

61 99.99.99.99.0.0.0.0.4.0.0.0.0.0.0.2 2

61 99.99.99.99.0.0.0.0.8.0.0.0.0.0.0.1 1

Table 4.2 Example of New Flow Routing Table.

3. Local restoration

The primary difference between centralized restoration and local restoration is

that the latter provides each router with enough information that it can take appropriate

actions if a failure is detected. Since the routers are integral to the failure detection

method this seems to be a very appropriate course of action. The primary benefit of local

restoration is extremely rapid recovery times.

Local restoration is accomplished by three tasks performed sequentially: detecting

a failure, determining which paths are affected by that failure, and then switching the

affected path to the alternate next hop. The last task is accomplished by changing the

goodness value of the primary path from 2 to 0. The routing algorithm will always

choose the next hop with the best (i.e., largest) goodness value. If an alternate path

20

exists (with goodness == 1) it now becomes the best choice (1 > 0) for the given path id.

If an alternate did no exist then the best next hop remains the same. See Figure 4.3 for an

example of a link failure involving next hop == 99.99.99.99.0.0.0.0.3.0.0.0.0.0.0.1.

Path ID Next Hop (IPv6) Goodness

2 99.99.99.99.0.0.0.0.1.0.0.0.0.0.0.1 2

17 99.99.99.99.0.0.0.0.3.0.0.0.0.0.0.1 0

17 99.99.99.99.0.0.0.0.5.0.0.0.0.0.0.5 1

49 99.99.99.99.0.0.0.0.3.0.0.0.0.0.0.1 0

61 99.99.99.99.0.0.0.0.4.0.0.0.0.0.0.2 2

61 99.99.99.99.0.0.0.0.8.0.0.0.0.0.0.1 1

Table 4.3 Flow Routing Table after Switching to Backup Path(s).

B. CLASSES MODIFIED TO SUPPORT REROUTING

1. FlowRoutingTable

The major change to the Flow Routing Table class is that it now extends the

JGL Hashmap class.

a) public synchronized void add (FlowRoutingTableEntry entry)

This method is overridden so that no to flow routing table entries contain

the same next hop and goodness value.

b) public Object get(Object o)

This method is overridden since the Hashmap may contain more than one

object per index value. This method returns the object with the best (highest) goodness

value.

c) public void silentInterface(Interface badInterface)

This method is introduced to switch a path to its backup route, if one

exists. It attempts to switch all paths that contain badInterface as their next hop.

21

2. FlowRoutingTableEntry

a) public int getGoodness()

The primary change to the flow routing table entry is the addition of a

goodness field and a method to access the value in that field.

3. BasePIB

a) private Path findAltPath(Integer sourceNode, Integer
 destinationNode,
 Integer previousNode,
 Integer nextNode,
 IPv6Address deadInterface)

This method determines whether there is a path that exists which avoids

the previous router and the next router. If the next router cannot be avoided it determines

if the next interface can be avoided as the second best solution.

b) protected void createAlternateTree(Path primaryPath)

This method iterates over the nodes traversed by a primary path and

creates an tree of alternate paths, rooted at the destination node. The alternate tree is set

up by this method by sending new flow routing table entries to the appropriate routers.

c) protected int admissionControl_IS(FlowRequest flowRequest)

This method is where createAlternateTree(Path primaryPath) is called

from, ensuring that the additional overhead of alternate path development is only incurred

if an IS flow is traversing a path. The primaryPath passed to createAlternateTree(Path

primaryPath) is the primary path of the IS flow.

22

IV. TESTING

A. ALTERNATE PATH(S)/TREE TESTING

Numerous network topologies were used to test the failure detection and alternate

path(s)/tree development algorithm. Each topology diagram is accompanied by a

description of the expected results and the resulting flow routing tables from the topology

test. A flow routing table with more than one entry for a path ID indicates that an

alternate path has been established. An initial goodness value of 2 denotes a primary

path, whereas an initial goodness value of 1 denotes an alternate path. Path ID #2, seen

in all the tests, is used for SAAM control traffic.

1. No alternate paths topology

The topology in Figure 5.1 tests to ensure that no alternate paths are found for

flows from router “A” to router “C”.

Figure 5.1 No alternate path topology.

23

Table 5.1 No Alternate Path Routing Tables.

2. Avoid next interface on last hop topology

The topology in Figure 5.2 uses a flow request from router “A” to router “C” to

ensure that when the next hop cannot be avoided an attempt is made to avoid the next

interface. This also handles the alternate path from the node just prior to the destination.

24

Figure 5.2 Avoid next interface topology.

Table 5.2 Avoid Next Interface Routing Tables.

25

3. Avoid infinite loop topology

The topology in Figure 5.3 tests to ensure that one alternate path is found from

router “A” to router “C” and that no infinite loop is established between router “A” and

router “B”.

Figure 5.3 No infinite loops topology.

26

Table 5.3 No Infinite Loops Flow Routing Tables.

4. Avoid next node topology

The topology in Figure 5.4 tests a flow request from router “A” to router “C” to

ensure that the next node is avoided when possible.

27

Figure 5.4 Avoid next node topology.

28

Table 5.4 Avoid Next Node Flow Routing Tables.

5. Avoid next interface topology

The topology in Figure 5.5 tests a router “A” to router “C” flow request to ensure

that avoid next interface works properly.

29

Figure 5.5 Avoid next interface topology.

Table 5.5 Avoid Next Interface Flow Routing Tables.

B. TRAFFIC REROUTING TESTING

30

Local restoration is accomplished by three tasks performed sequentially: detecting

a failure, determining which paths are affected by that failure, and then switching the

affected path to the alternate next hop. The last task is accomplished by changing the

goodness value of the primary path from 2 to 0. The routing algorithm will always

choose the next hop with the best (i.e., largest) goodness value. If an alternate path

exists (with goodness == 1) it now becomes the best choice (1 > 0) for the given path id.

If an alternate did no exist then the best next hop remains the same. See Figure 4.3 for an

example of a link failure involving next hop == 99.99.99.99.0.0.0.0.3.0.0.0.0.0.0.1.

Table 5.6 Router “B” Interface Status

Table 5.7 Router “B” Link State Monitor

Table 5.8 Router “A” Link State Monitor

31

Table 5.9 Router “A” Flow Routing Table

Table 5.10 Router “C” Flow Sink

32

V. CONCLUSIONS AND RECOMMENDATIONS

A. SYNOPSIS AND CONCLUSION

This thesis determined the most suitable traffic rerouting scheme for the Server

and Agent Based Active Network Management project. Most research on network fault

tolerance has followed a strict adherence to either a local or central restoration algorithm.

The hybrid fault tolerance schema designed for SAAM allows a SAAM network to

benefit from the strengths of each methodology. The SAAM Server’s total knowledge of

the region’s architecture allows the optimization of alternative route development. The

ability of the individual routers to use this alternate path information at a local level

allows for fast switching to backup paths and minimal loss of packets.

B. FLOW ROUTING TABLE REDESIGN

The previous Flow Routing Table was implemented with the native Java

Hashtable. Hashtable is the logical entity to use since it performs very fast lookups on

index values – a critical feature in a router. To allow local restoration a Path must have

more than one option for Next Hop. Since Flow Routing Table entries are indexed by

Path ID and Java’s Hashtable can contain no more than one Object per index a work-

around had to be found. JGL’s Hashmap class fills the requirement exactly. It performs

all the same functions as Hashtable and allows more than one Object per index value.

Since more than one Flow Routing Table Entry is stored per index value a method of

determining which entry is the best must be available, hence the addition of the Goodness

field.

C. FAILURE DETECTION

Keeping in mind that failures are becoming scarcer, the task was to develop a

method of detecting network failures with minimal overhead. The conventional wisdom

for monitoring the health of a network has been to send “heartbeat” packets between

routers and interfaces. Since the SAAM auto-configuration cycle occurs continuously,

and at a set rate, this traffic can be used in the place of heartbeat packets. By queuing off

the configuration cycles, which provides automatic synchronization, and monitoring each

interface for inbound packets received, an extremely low-overhead failure detection

33

method was designed. The frequency of the auto-configuration messages is configurable,

but is predicted to be in the 300-500ms range. Detecting a network failure in less than

1000ms was determined to be very acceptable indeed.

D. TEST METHODOLOGY

The test methodology for this thesis is not complex. The two most important

factors infinite loops, minimal interference were addressed by just a few topologies. The

topologies used for testing are simple but are indicative of current network connectivity

patterns.

E. AREAS FOR FURTHER INVESTIGATION AND STUDY

Reiterating the premise that network failures are scarce and overall network

performance should not see significant negative impact by the implementation of a fault

tolerance schema, the weaknesses of this thesis are highlighted.

Alternate path development does not consider flow requirements. The alternate

path development algorithm simply takes the first shortest path found which has minimal

interference with the primary path. This is because in SAAM flows are switched based

on Path ID. Although it is possible to switch based on Flow IDs this would result in

routing tables that would be astronomically large and unmanageable.

Alternate path bandwidth sharing. The initial design of SAAM makes this a

simple problem since it divides the bandwidth up into 10% control traffic, 30% Integrated

Service, 30% Differentiated Service, and 30% Best Effort. Since Integrated Service

flows have priority and they take up only 30% of the bandwidth they can simply preempt

lower class traffic on an alternate path, if necessary. This preemption will be taken care

of by the priority scheduler. Paulo Silva’s thesis introduces the concept of inter-service

borrowing, which complicates an otherwise simple solution. With inter-service

borrowing it will be possible for Integrated Services to consume more than 50% of the

bandwidth and therefore lower class traffic preemption may not solve the alternate path

bandwidth sharing problem. One possible solution to this problem would be to assign

two logical Path IDs, a primary path and a borrowing path, to the same physical path and

to only allow up to 30% of IS traffic on the primary path. In the event of a failure only

the traffic on the primary path would be switched to the alternate path. One obvious

34

drawback to this solution is that it would double the size of the routing tables. This is left

to further investigation.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

APPENDIX A. FLOW ROUTING TABLE CODE CHANGES

package saam.agent.router;
import com.objectspace.jgl.HashMap;

public class FlowRoutingTable extends HashMap
implements TableResidentAgent, MessageProcessor, FlowRoutingTableResidentAgent
{
 //tests if FlowRoutingTable contains an entry for a Path
 public boolean hasEntry(int pathID)
 {
 if (super.get(new Integer(pathID)) != null)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 //Returns the FlowRoutingTableEntry with the highest goodness rating
 public Object get(Object o)
 {
 int bestGoodness = 0;
 Object bestChoice = null;
 Object tempChoice = null;
 FlowRoutingTableEntry frte;
 Enumeration e = values(o);

 while (e.hasMoreElements())
 {
 tempChoice = e.nextElement();
 frte = (FlowRoutingTableEntry) tempChoice;
 if (frte.getGoodness() > bestGoodness)
 {
 bestChoice = tempChoice;
 bestGoodness = frte.getGoodness();
 }
 }
 return bestChoice;
 }

37

 public void silentInterface(Interface badInterface)
 {
 //Enumerate entire FRT looking for entries which == badNextHop
 Enumeration e = elements();
 FlowRoutingTableEntry frte = null;

 while (e.hasMoreElements())
 {
 frte = (FlowRoutingTableEntry) e.nextElement();

 if (Interface.isOnSameNetwork(frte.getNextHop(),
 badInterface.getID().getIPv6(), badInterface.getID().getSubnetMask())

 && frte.getGoodness() == FlowRoutingTableEntry.PRIMARY_ROUTE)
 {

 frte.setGoodness(
 FlowRoutingTableEntry.DEMOTE_PRIMARY_ROUTE);

 }
 }
 gui.fillTable(getTable()); //refresh FRT
 }

 public synchronized void add (FlowRoutingTableEntry entry)
 {
 //Ensure there are no entrys with equal goodness fields for any one path
 Enumeration ptr = elements();
 Enumeration e = elements();
 while (ptr.hasMoreElements())
 {
 FlowRoutingTableEntry frte = (FlowRoutingTableEntry) e.nextElement();
 if (frte.getFlowLabel() == entry.getFlowLabel() && frte.getGoodness() ==
 entry.getGoodness())
 {
 remove(ptr); //This removes a FRTE that is being updated
 }
 ptr.nextElement();
 }

 add((new Integer(entry.getFlowLabel())), entry); //[TW]
 gui.fillTable(getTable());
 }

 private void remove (FlowRoutingTableEntry entry)
 {
 remove(new Integer(entry.getFlowLabel())); //Hashtable's remove method
 gui.fillTable(getTable());

38

 }APPENDIX B. BASEPIB CODE CHANGES

 /**
 * Creates the alternate path/tree for IS flows
 * @param primaryPath the primary path for which an alternate tree is being developed
 * @return void
 */
 protected void createAlternateTree(Path primaryPath)
 {
 Integer srcNode, dstNode, prvNode, nxtNode;
 IPv6Address deadInterface;
 Integer primarySrcNode = primaryPath.getaPIIndex().getSource();
 Integer primaryDstNode = primaryPath.getaPIIndex().getDestination();
 Path backupPath;

 int nodeSeqSize = primaryPath.getNodeSequence().size();
 int[] nodeSeq = new int[nodeSeqSize];
 int nodeSeqNum = 0;
 Enumeration eNodeSeq = primaryPath.getNodeSequence().elements();
 while (eNodeSeq.hasMoreElements())
 {
 nodeSeq[nodeSeqNum] = ((Integer) eNodeSeq.nextElement()).intValue();
 nodeSeqNum++;
 }

 int interfaceSeqSize = nodeSeqSize - 1;
 IPv6Address[] interfaceSeq = new IPv6Address[interfaceSeqSize];
 int interfaceSeqNum = 0;
 Enumeration eInterfaceSeq = primaryPath.getInterfaceSequence().elements();
 while (eInterfaceSeq.hasMoreElements())
 {
 interfaceSeq[interfaceSeqNum] = ((IPv6Address) eInterfaceSeq.nextElement());
 display.sendText("interface " + interfaceSeqNum +
 interfaceSeq[interfaceSeqNum]);
 interfaceSeqNum++;
 }

 for (int x = nodeSeqSize - 1; x > 0; x--)
 {
 srcNode = new Integer(nodeSeq[x]);
 if (x != nodeSeqSize - 1)
 {
 prvNode = new Integer(nodeSeq[x + 1]);
 }
 else

39

 {
 prvNode = null;
 }
 nxtNode = new Integer(nodeSeq[x - 1]);
 dstNode = primaryDstNode;
 deadInterface = interfaceSeq[x - 1];

 backupPath = routingAlgorithm.findAltPath(
 srcNode,
 dstNode,
 prvNode,
 nxtNode,
 deadInterface);

 if (backupPath != null)
 {
 setupPath(backupPath, primaryPath.getPathID().intValue(),
 FlowRoutingTableEntry.BACKUP_ROUTE);
 primaryPath.bBackupCreated = true;
 }
 else
 {
 display.sendText("No backup route found!!");
 display.sendText("dead interface " + deadInterface);
 }
 }
 } // end of createAlternateTree()

 /**
 * Implementation of the First Shortest Path algorithm for finding alternate paths.
 * @param sourceNode the source router ID
 * @param destinationNode the destination router ID
 * @param previousNode the route ID of the previous router
 * @param nextNode the router ID of the next router
 * @param deadInterface the IPv6 address of the next interface
 * @return the required path or null if no path was found
 */
 private Path findAltPath(Integer sourceNode, Integer destinationNode,
 Integer previousNode, Integer nextNode, IPv6Address deadInterface)
 {
 testMsg("findAltPath() for rerouting");

 Path checkPath = null;
 Path foundPath = null;

40

 Hashtable table = new Hashtable();

 //labeled compound statement
 stop:
 {
 for (int i = 1; i < MAX_HOP_COUNT; i++)
 {
 testMsg("Hop count = " + i);
 table = aPI[sourceNode.intValue()][destinationNode.intValue()][i];
 Enumeration enum = table.elements();

 if (enum.hasMoreElements())
 {
 //Cycle through each of the paths of the current hop count, between
 //source and destination nodes
 while (enum.hasMoreElements())
 {
 Integer currentPathID = (Integer) enum.nextElement();

 // Extract current path information
 checkPath = (Path) htPaths.get(currentPathID);

 if (!(checkPath.containsNode(previousNode)) &&
 !(checkPath.containsNode(nextNode)))
 {
 foundPath = checkPath;
 break stop;
 }
 else if (!(checkPath.containsInterface(deadInterface)) &&
 !(checkPath.containsNode(previousNode)))
 {
 if (foundPath == null) //hold the first one found
 {
 foundPath = checkPath;
 }
 }
 }//End of while-loop
 }//End of if structure
 }//End of for-loop
 }//End of labeled stop structure

 return foundPath;

 } //end of findAltPath()

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

LIST OF REFERENCES

1. Kodialam, M., Lakshman, T.V., “Dynamic Routing of Locally Restorable

Bandwidth Guaranteed Tunnels using Aggregated Link Usage Information”,

INFOCOM 2001, IEEE Proceedings, Volume: 1, 2001

2. Kar, K., Kodialam, M., Lakshman, T.V., “Minimum Interference Routing of

Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering Applications”,

IEEE Journal on Selected Areas in Communications, Volume: 18 Issue: 12,

December 2000

3. Kodialam, M., Lakshman, T.V., “Dynamic Routing of Bandwidth Guaranteed

Tunnels With Restoration”, INFOCOM 2000, Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies, IEEE

Proceedings, Volume: 2, 2000

4. Kuo Dao-Cheng, John H. Gibson, “Design of a Dynamic Management Capability

for the Server and Agent Based Active Network Management (SAAM) System to

Support Requests for Guaranteed Quality of Service Traffic Routing and

Recovery”, Master’s Thesis September 2000, Computer Science Department,

Naval Postgraduate School

5. Hasan Akkoc, “A Pro-Active Routing Protocol for Configuration of Signaling

Channels in Server and Agent-Based Active Network Management (SAAM)”,

Master’s Thesis September 2000, Computer Science Department, Naval

Postgraduate School

6. Efraim Kati, “Fault-Tolerant Approach for Deploying Server Agent-Based Active

Network Management (SAAM) Server in Windows NT Environment to Provide

Uninterrupted Services to Routers in Case of Server Failure(s)”, Master’s Thesis

September 2000, Computer Science Department, Naval Postgraduate School

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

 debarber@nps.navy.mil

4. Director, Training and Education, MCCDC, Code C46

Quantico, Virginia
webmaster@tecom.usmc.mil

5. Director, Marine Research Center, MCCDC, Code C40RC

Quantico, Virginia
ramkeyce@tecom.usmc.mil

 strongka@tecom.usmc.mil
 sanftlebenka@tecom.usmc.mil

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)

doranfv@mctssa.usmc.mil
palanaj@mctssa.usmc.mil

7. Dr. Mari W. Maeda

Program Manager
DARPA/ITO
3701 Fairfax Drive
Arlington, VA 22203-1714
mmaeda@darpa.mil

8. Cary Colwell
Naval Postgraduate School
Monterey, California
colwell@cs.nps.navy.mil

45

mailto:debarber@nps.navy.mil
mailto:webmaster@tecom.usmc.mil
mailto:ramkeyce@tecom.usmc.mil
mailto:strongka@tecom.usmc.mil
mailto:sanftlebenka@tecom.usmc.mil
mailto:doranfv@mctssa.usmc.mil
mailto:palanaj@mctssa.usmc.mil

	INTRODUCTION
	A.MOTIVATION
	B.PROBLEM STATEMENT AND APPROACH
	C.SCOPE
	D.THESIS ORGANIZATION

	NETWORK FAULT TOLERANCE AND SAAM BACKGROUND
	A.GOAL OF SAAM
	B.SAAM ARCHITECTURE
	LINK RESTORATION
	1.Types of network failures
	2.Current rerouting solutions
	3.Next generation rerouting solutions

	III.FAILURE DETECTION
	FAILURE DETECTION STRATEGY
	SAAM AUTOCONFIGURATION CYCLE
	Pseudo-code for proposed SAAM failure detection scheme
	2.Sample SAAM auto-configuration cycle

	C.INTERFACE SILENT MESSAGE
	D.FAILURE DETECTION LIMITATION
	E.CLASSES MODIFIED TO SUPPORT FAILURE DETECTION
	1.Interface
	a)public boolean trafficReceived()

	LinkStateMonitor
	a)private synchronized void generateInterfaceSA()

	InterfaceSA
	a)public InterfaceSA(IPv6Address ipNum, int messageIndex)

	BasePIB
	a)public void processLSA (LinkStateAdvertisement LSA)

	IV.REROUTING
	A.REROUTING STRATEGY
	Alternate Path Development and Deployment
	Pseudo-code for Alternate Path Development and Deployment

	Storing Primary and Alternate Routes
	3.Local restoration

	CLASSES MODIFIED TO SUPPORT REROUTING
	FlowRoutingTable
	a)public synchronized void add (FlowRoutingTableEntry entry)
	b)public Object get(Object o)
	c)public void silentInterface(Interface badInterface)

	2.FlowRoutingTableEntry
	public int getGoodness()

	3.BasePIB
	private Path findAltPath(Integer sourceNode, Integer�destinationNode,�Integer previousNode,�Integer nextNode,�IPv6Address deadInterface)
	b)protected void createAlternateTree(Path primaryPath)
	c)protected int admissionControl_IS(FlowRequest flowRequest)

	TESTING
	A.ALTERNATE PATH(S)/TREE TESTING
	No alternate paths topology
	Avoid next interface on last hop topology
	Avoid infinite loop topology
	Avoid next node topology
	Avoid next interface topology

	B.TRAFFIC REROUTING TESTING

	CONCLUSIONS AND RECOMMENDATIONS
	A.SYNOPSIS AND CONCLUSION
	B.FLOW ROUTING TABLE REDESIGN
	FAILURE DETECTION
	TEST METHODOLOGY
	AREAS FOR FURTHER INVESTIGATION AND STUDY

	APPENDIX A.FLOW ROUTING TABLE CODE CHANGES
	}APPENDIX B.BASEPIB CODE CHANGES
	LIST OF REFERENCES
	DISTRIBUTION LIST

